A numerical introduction to tensor networks for quantum simulation

Austin Minnich, California Institute of Technology Fall 2019

[Credit for course materials: Prof. Jan von Delft]

1. <u>Why tensor networks?</u>

Tensor networks provide a flexible description of quantum states.

2

In some cases, they are efficient - can accurately describe state with polynomial resources.

Example: spin- chain, with sites:

Local state space of site

Local state label:

Local dimension:

Shorthand:

Index on state label suffices to identify the site Hilbert space

Generic basis state for full chain of length N (convention: add state spaces for new sites from left):

Hilbert space for full chain:

Generic quantum state:

Dimension of full Hilbert space : (# of different configurations of)

Specifying involves specifying , i.e. different complex numbers.

is a tensor of rank (rank = # of legs)

Graphical representation: (one leg for each index)

Claim: such a rank L tensor can be represented in many different ways:

MPS: matrix product state

PEPS: projected entangled-pair state

arbitrary tensor network

-a link between two sites represents entanglement between them

-different representations -> different entanglement book-keeping

-tensor network = entanglement representation of a quantum state

2. Iterative diagonalization

Consider a spin-s chain with Hamiltonian

:

local state space for site

We seek eigenstates of :

MCE 201, APh 250/Minnich		Modu	Module 1		Page 5 of 26
Diagonalize	Hamiltonian iterative	ely, adding or	ne site at	a time.	
N = 1: Start have form	with first site, diago	nalize	in Hilber	t space	. Eigenstates
(sum over 'outgoing'	implied)	coefficient n	natrix	combinir	ng 'incoming' into
N = 2: Add s	second site, diagona	lize in	Hilbert sp	pace :	
(sum over 'outgoing'	implied)	coefficient n	natrix	combining 'inco	ming' into
N = 3: Add third site, diagonalize in Hilbert space :					
Vour tru					

Your try:

Answer:

Continue similarly until having added site N. Eigenstates of have following structure:

Nomenclature: indices = physical indices,

= (virtual) bond

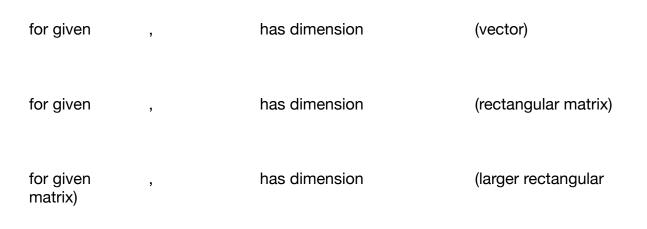
Alternative, widely-used notation: 'reshape' coefficient tensors as

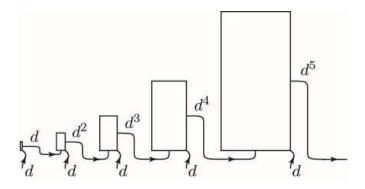
to highlight 'matrix product' structure in noncovariant notation:

<u>Comments</u>

1. Iterative diagonalization of 1D chain generates eigenstates whose wave functions are tensors that are expressed as matrix products -> matrix product states (MPS)

Matrix size grows exponentially.



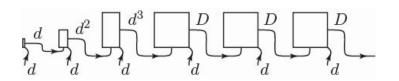


"Hilbert space is a large place!"

σ

Numerical costs explode with increasing N, so truncation schemes are needed. Truncation can be done in a controlled way using tensor network methods. Standard truncation scheme: use

for all virtual bonds



2. Number of parameters available to encode state:

[equal if all virtual bonds have same dimension D]

If N is large:

Why should we expect this ansatz with polynomial parameters to accurately represent a quantum state?

Remarkable fact: for 1d Hamiltonian with local interactions and a gapped spectrum, its ground state can be accurately represented by MPS!

Reason: Area law for entanglement entropy. We will discuss later.

3. Covariant index notation

More detail of covariant index notation is in L2 & L10 of "Mathematics for Physicists", Altland & von Delft, see <u>here</u>.

Kets (Hilbert space vectors)

For kets, indices are down. E.g. basis kets:

For components of kets (wrt a basis), indices are upper:

Repeated indices (always up-down pairs) are always summed (implied summation).

Example: linear combination of kets.

Note: for

the index

identifies components of kets -> upper identifies components of basis kets -> lower

Basis for direct product space:

Note ket order: start with first space on very right, successively attach new spaces from left. Linear combinations:

Bras (Hilbert space dual vectors)

For bras, indices are upper. E.g. basis bras:

For components of bras (wrt a basis), indices are lower:

Complex conjugation:

Linear combinations of bras:

Complex conjugation:

Note: for , the index identifies basis bras (dual vectors) hence upper the index identifies components of bras (dual vectors) hence lower Basis for direct product space:

Note bra order: opposite to kets so expectation values yield nested bra-ket pairs:

Linear combinations:

Complex conjugation:

Orthonormality

If form orthonormal basis:

If form orthonormal basis, too:

Combined:

Hence A is unitary:

Operators

Simplified notation

It is customary to simplify notational conventions for kets and bras.

In kets, use subscript indices as ket names:

In bras, use superscript indices as bra names:

Now up/down convention for indices is no longer displayed but it still implicit!

Linear combination of kets:

Coefficient matrix = overlap:

If direct products are involved:

Coefficient matrix = overlap:

Linear combination of <u>bras</u>:

Coefficient matrix = overlap:

If direct products are involved:

Coefficient matrix = overlap:

Operators:

In the overlaps:			
bra indices: upper on	or	, as incoming arrows	
ket indices: lower on	or	, as outgoing arrows	

4. Entanglement entropy and Area Laws (introductory comments)

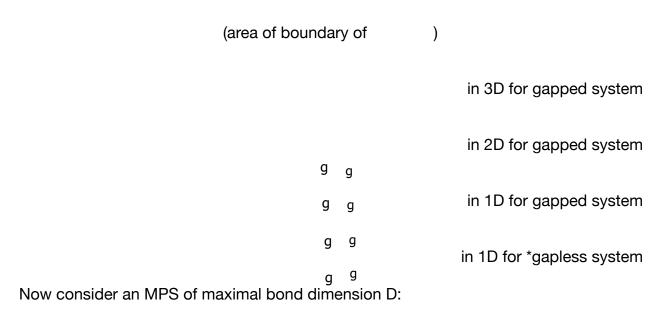
Consider a quantum system in state , with density matrix

Divide system into two parts,	. Suppose	has linear	dimension	
To obtain reduced density matrix of	(or), trace out	(or)
'reduced density matrix' for :				

'Entanglement entropy' of and :

TKey result: for Hamiltonians with only local interactions, ground state is governed by an 'area law':

Module 1



A	B	C		D
α			β	1
σ_1	σ_2	σ	3	σ_4

Divide system into two parts: Left -> 2 sites, Right -> 2 sites

g

g

A	B I c	C D
α	$\lambda \bar{\lambda}$	β
σ_1	σ_2	$ \sigma_3 \sigma_4 $

g

=entangled superposition of two state spaces, each having dimension of at most D

(After the sum over has been performed explicitly using Kronecker delta, result contains non-covariantly paired indices

Density matrix:

Reduced density matrix:

with matrix elements

This matrix has rank

(say

)

Let be its eigenvalues, with

and normalization

Entanglement entropy:

Maximal if for all :

1D gapped:

1D critical:

2D gapped:

3D gapped:

Conclusion: MPS can encode ground state efficiently for gapped and gapless systems in 1D, but not 2D or 3D!

5. Tensor network diagrams

[Orus 2014, Sec 4.1]

'tensor' = multi-dimensional array of numbers

'rank of tensor' = number of indices = # of legs

rank-0: scalar

rank-1: vector

rank-2: matrix

rank-3: tensor

Index contraction: summation over repeated index

 $\frac{C}{\alpha \quad \gamma} = \frac{A}{\alpha \quad \beta \quad \gamma}$ graphical representation of matrix product

Fall 2019

= 'bond dimension' of index

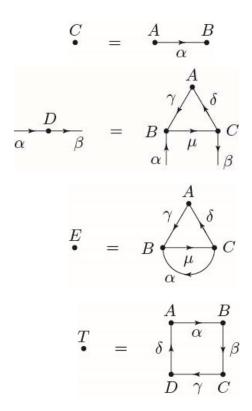
g

g

'open index' = non-contracted index (here)

'tensor network' = set of tensors with some or all indices contracted according to some pattern

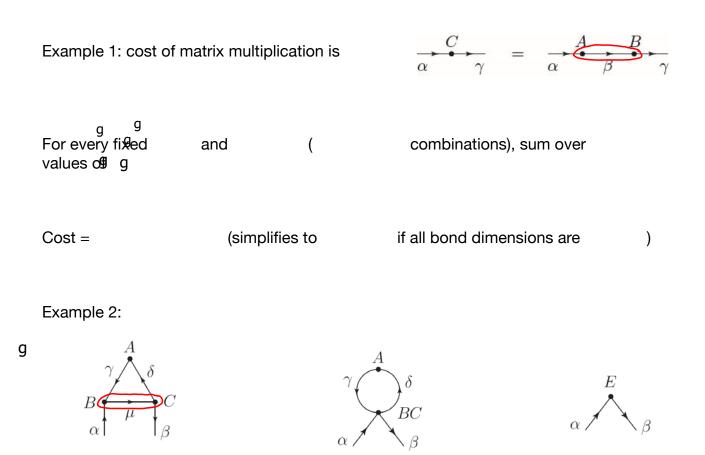
Examples:

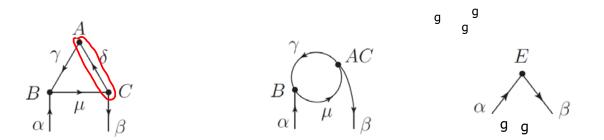


Module 1

Cost of computing contractions

<u>Result</u> of contraction does not depend on order in which indices are summed, but numerical <u>cost</u> does!





g

!

First contraction scheme has total cost , second has

Finding optimal contraction order is difficult. In practice, trial and error....

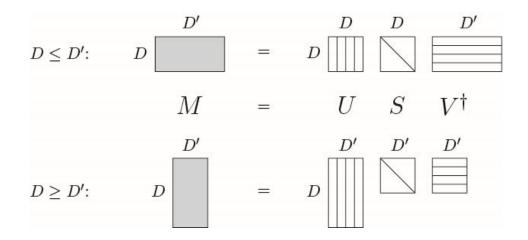
In first part of course we will focus on 1D tensor networks, then 2D.

6. Singular value decomposition (SVD)

[Schollwoeck2011, Sec 4]

Any matrix of dimension ca

can be written as



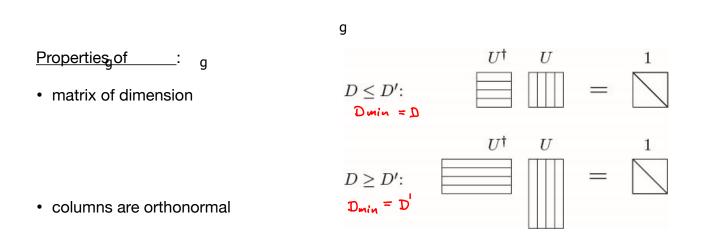
Properties of S

- square matrix of dimension
- g
- diagonal with non-negative diagonal elements (singular values)
- Schmidt rank : number of non-zero singular values

MCE 201, APh 250/Minnich

Module 1

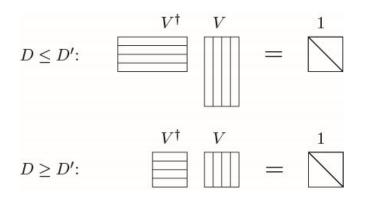
g g • arrange in descending order:



Properties of :

- matrix of dimension
- rows are orthonormal

g



Useful properties:

So columns of are eigenvectors of

Columns of are eigenvectors of

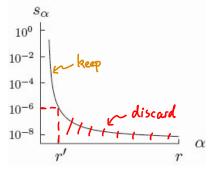
Truncation

SVD yields optimal approximation of rank matrix by a rank matrix

(optimal wrt Frobenius norm)

Suppose

with



Truncate:

with

T Retain only

largest singular values!

Visualization, with

:

$$D \leq D': \qquad D \qquad M \qquad = D \qquad D \qquad D \qquad D'$$

$$D' \qquad M' \qquad = D \qquad D' \qquad D' \qquad T' \qquad D' \qquad T' \qquad D'$$

$$D \qquad M' \qquad = D \qquad 0 \qquad 0 \qquad 0 \qquad = D \qquad D' \qquad D'$$

$$D = D': \qquad D \qquad M \qquad = D \qquad D' \qquad D' \qquad D'$$

$$D = D': \qquad D \qquad M \qquad = D \qquad D' \qquad D' \qquad D'$$

$$D = D': \qquad D' \qquad D' \qquad D' \qquad D' \qquad D'$$

$$D = D \qquad D' \qquad D' \qquad D' \qquad D' \qquad D'$$

$$D = D \qquad D' \qquad D' \qquad D' \qquad D' \qquad D'$$

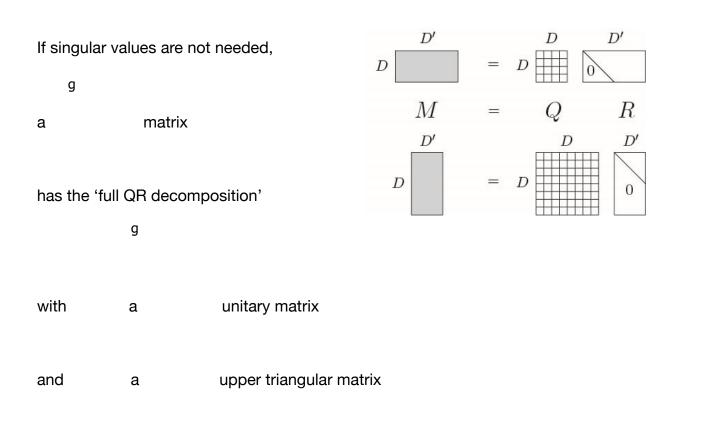
$$D = D \qquad D' \qquad D' \qquad D' \qquad D' \qquad D'$$

$$D = D \qquad D' \qquad D' \qquad D' \qquad D' \qquad D'$$

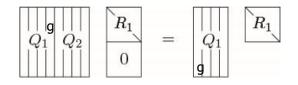
$$D = D \qquad D' \qquad D' \qquad D' \qquad D' \qquad D'$$

Module 1

QR decomposition



If $D \ge D'$, then M has the 'thin QR decomposition'



with dim(Q1) = , dim(R1) =

g

and R1 upper triangular.

QR is numerically cheaper than SVD but has less information (does not provide rank).

,

g