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[credit for course materials: Prof. Jan von Delft]
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In general, this produces MPO J)\ @3\) @L)z
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with growing bond dimensions.

But for short-range Hamiltonians, bond dimension is typically small. ? 0([ )
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In practice, application of MPO is usually followed by SVD+truncation to bring bond
[ 5™ ller A S
f\ (04 -
I A ¢ v

dimension back down:
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2. MPO representation of Heisenberg Hamiltonian
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Contains sum of one and two-site operators. How can we write it as an MPO?
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Solution: introduce operator-valued matrices such that product reproduces above

A= 169 T Wype, 65
L : v
= (1022 Moy e, <o) @ ()0 o) 0 )
A ¢ "

Each acts only on site Q ; their tensor product gives the full MPO.
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Viewed from a bond, the string of operators in each term of  can be in one of
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|
Check: multiplying out a product of such \I/ s yields desired result:
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3. Applying MPO to mixed-canonical state
[Schollwock2011, Sec 6.2]

How does an MPO act on an MPS in mixed-canonical representation wrt site Q ?
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C
L can be computed iteratively, for ,Q é e" '

(Similarly for R, for q( > 06D
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DMRG I: Ground state search

» The density matrix renormalization group (DMRG) was invented by Steve White
(student of Ken Wilson) to solve general quantum chain models. [White1992, 1993]

* First realization of connection between MPS and DMRG in limit : Ostlund &
Rommer [Ostlund 1995]

* Realization that finite-size DMRG leads to MPS: Dukelski, Martin-Delgado, Nishino,
Sierra [Dukelski1998]

* Modern formulation: Vidal [Vidal2003, 2004], Cirac and Verstraete [Verstraete2004]

» Time evolution: Daley, Kollath, Schollwock, Vidal [Daley2004], White, Feiguin

[White2004]



MCE 201, APh 250/Minnich Module 4 Page 12 of 27

1. lterative ground state search

View space of all MPS of given bond dimension, D , as variational space.

Minimize <\”ﬁlh7 in this space, subject to constraint of unit normalization,
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Do this one A tensor at a time: —f [(Lf”?‘\é) _ )\(kt\%? - D
Mm

Mo
,\ o d C *\ /
‘K@l D >\ -——‘L—E ¢!
I o «
él

1

In index notation:

(

‘ q a
Hﬁg\ Aoy = Mgy wik a=(

This is an eigenvalue equation for A[’-) can can be solved with standard linear algebra

tools such as a Lanczos algorithm.

Note: if H)is not represented in mixed-canonical form, one obtains a generalized

eigenvalue equation of the form HA = MA with N defined above.
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Use that ‘eigenvector’ A&-) yielding lowest eigenvalue (=current estimate of ground
state energy) to ‘update’ MPS, then move to next site, switch to mixed-canonical form

on site U‘

optimize A(M) etc.

‘Sweep’ back and forth until convergence of ground state energy has been achieved.

This works remarkably well for 1D chains with short-ranged interactions.
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2. Lanczos method

[Lanczos1950, Ojalvo1970, Paige1972, Koch2011]

» Fast way of finding extremal eigenvalues of a Hermitian NxN matrix, H .

* Prerequisite: an algorithm for computing Hl‘f‘? , for any vector (%) .

We seek the extremal value of E [(((/7) = ( \'Z(LS(:: ;

Denote extremal value by Ej = min EC l"'ﬂ] = E[ l\{/j>j
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eliy) -« H«))

To find optimal value for “ , minimize N wrt to ‘variational parameter’ d ,

in the space Kl = S ? [\+7( \kbl)-g = f/u\{“{)/ H‘Lt?%

Construct a normalized basis for this space (for a random initial state (t.( 7 ):

First basis vector: ‘ Vo7 = &

d e %

Second basis vector: K |V(7 = [\0/"7 - Hl\/o> - lua)<vo‘ H[Vo7

% = 0 N
num'?&{ﬂm G S H"j- a/“‘ﬂm(k W'F [\/o)
yilwi) = ‘
Now find a matrix representation of H in this space. Define: [31 < <U|W(
«, = Colt\v,) a2 dulkly? (le\vJ,/
A ¢ (<
b, = G (0,) Ay &V, | o
SERIIAE vk ¥ luda
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Hence in the space k. , the Hamiltonian has the matrix representation:

&
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The ground state of Hk— , say I 9)k , yields the optimal choice for oL
[ (

Now we could iterate: use '9> as starting point for another optimization step.

¢

Convergence is rapid. Monitor quality of result by computing the residual energy

|
() = () (k-e)dl
L (ACAERS LAY,

and stop when it drops below some threshold.

variance,

Krylov space

After L steps, starting from ‘ \l,? , the resulting vector will live in

'(L(W,)) >§/’M\§ |V;>I"“Uo7f Hk“’o?( cn g H\/\\/b{g

=‘Krylov space of H over “Ig? ‘ (dimension L‘f‘ ).

Instead of repeatedly minimizing in 2x2 subspaces, we could first construct kL , then
compute its ground state. (This way is faster, since it amounts to using L_
simultaneous variational parameters instead of L. separate ones). To do this,

iteratively construct a ‘Krylov basis’ for l((':
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Krylov basis

As before: [':‘(V‘7 = ‘6}7 7(‘{\007 - dol‘h?

l
Third vector: Lk‘U{\7 = \\7\}7 = Hh’l? = Z IV)7<VJ“'”V(7

.

J<T0

= Hlu) =W, - It

where [9)\ < m < <(/)~‘H'V(>

Note: (\/L“*((Vo) =0 ( 5/\"-‘(, H[V,)GS/‘MglVJ,(V‘%

X
Fourth vector: L3‘V37 E l6\37 ;H’\UJ_7 - 'Z tV)7<VJIH‘\Va\7
J=o

= "H‘Q) - WJDG‘L = lvl7l))f = ’\IO -O
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Thus we obtain a two-term iteration scheme: we only need to store 3 vectors at a time!

q
nth step: LAH (UAH7 = ( Unu) 7’(‘“""7 = 'é; leij‘HlVA7

J2o

= HD ~ . - (U, b

with a,-= <(/,.‘(‘H(/,\7 lﬁ,\ = <Vn’ (—HV“\-Q

(

[If it happens that é’ﬂ-(: O , pick an arbitrary 'VMO orthonormal to all ‘V)*) ] (}: Or « ﬂ>
Through h L) = (= —
roughout we have <V/l4(' H—'VJ? O QLP\ J.,o{,__//l |

Hlu;) € s § Lua), () ivm%

Hence, rearranging: H\UA [UA~17 é t [V,l a + 'V4ﬂ7!9
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Soin k‘. , H has tridiagonal form:

L( - q(a blk “
@ - b 4, b
NN
\

Ground state of Kk satisfies the eigenvalue equation
<

C

<HkLyJ' (%L )3 ) Et?L (%?L);

Thus

L_ [y
€l wl )= 2w
J=6

are the best approximations, within the Krylov space L‘_ , of the true ground state

energy and ground state.
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C
Note: ""5 ) can be constructed ‘on the fly’, one term at a time, by restarting
Lanczos iteration from [0,7 .
The Lanczos scheme converges exponentially fast, with a

/S

rate constant ~ [gap to first excited state]

Summary
1. Start with arbitrary (Vo 7

2. First iteration step a
(6= Wl
1:, Ao - ((71“/37

¥ < e ok
(. (V) < |\/, 7- dol\la7 & o<

@General iteration step for n >,_‘ :

( (oA: (‘TI\ ‘G\"7

¢

i, TFbt0 IWA)T
else il fua? agauped b ve).. (Va7
i, G = Hlua)
W, d, = <5:‘4—1(UA7
v, 'Jl\ﬂ7 = [\71\447 - lva, - [VN? bf

and repeat 3 until convergence.

“7'[7 /é o ﬂoﬁﬂx[?&&‘\’\

There are other ways of organizing this iteration loop, but this one is most numerically

stable [Paige1972]
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3. DMRG for excited states

Suppose we have an MPS representation for ground state,

f/" goovnd kg

147 ’mWAca

found by DMRG. Excited states can be constructed by repeating a DMRG sweep in

space orthogonal to '37 .

Extremize: (Lk . (&‘ \[/7 - )\( ("“‘(’7 - >\J\LC(" 97

Lagrange multipliers enforce <Lt(gt7 - l { L‘[’ (g ) =0.

Extremization wrt A(C) yields:

Aoy b A
)k (TR kK
r LT”I:\ +

o

All o(“‘kc( [‘EM“) 443 A ‘tﬂhﬂ
144 xées}/vjl Cﬁc;(‘&( Sm,
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Generic structure of this equation, in mixed-canonical representation of site 1

Ce) (
£ aa
( C (§ -
(Ntu'\ a(:(‘(U(/s) [ AQA ”
5t 49a _
pto-
[(1“’—/\9/‘“)
" "“’l/s‘ 'S ) deo

Index-free notation:

(A : A Xl @l)=2

Define projector onto subspace orthogonal to [97 : Pj = I - [93 Cj(

L g ot
[with indices: qD;a = —qu - 5-:[ [P;d 3“ =0 )
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Project eigenvalue equation into this subspace:

bW (8 + (01 14) = Xb(A) +o
r =%

()jH P5‘47 < X(fﬁ(A7

This is simply an eigenvalue problem, for %H , in subspace orthogonal to ’37 Lt

can be solved using straightforward generalization of Lanczos scheme, using Krylov

subspace orthogonal to ‘ﬂ?

t p 1 )
Given an arbitrary initial state N,D, project it onto orthogonal subspace, va = 15 Vs

and construct new Krylov vectors using

I\(TMD - /)j H (V4H7 - ‘U'\\)qn 'W/\17Bf

Why not simply use excited states in V‘_ ? Because numerical noise can cause thel \/,\7

-16
to be not exactly orthogonal, hence for .) Cn-) [ VA ll/j) «(0 rather than 0.

This leads to spurious multiple copies of eigenstates (‘ghost states’). For the ground
state, the variational principle ensures that the loss of orthogonality does not become a
severe problem. But for excited states, it does. To prevent this, explicit

reorthogonalization is needed at every step, using loj , as above.
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Block-Lanczos for excited states

"l
Standard Lanczos: represent action of H as A

o, )= (U, ¢lu)b W o

Block-Lanczos: start with set of M orthogonal vectors,

\\"’a;h) ( f:( < - M , and represent action of H as

5o )
L\Wo“f) = o) ) ( (“f\ + |V1,37(b,\ |
0/““,)9“«‘
-y
oith (Uo,)'l V((;7;O ( C‘/c,jl\llli7 - |
my = WoolkWe:) @Y Vi fHlve:)

etc. Then the lowest M eigenstaté of block-tridiagonal matrix

gives the Lanczos approximation for lowest M eigenstates of H

Mo TG )
patcian [ ) (a‘) [L*f)

\\ \ \
L
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4. Two-site update

If one encodes symmetries, then ‘one-site update’ as discussed above can get stuck: if
one starts in the wrong symmetry sector, one stays there, because one-site update
offers no way of enlarging the Hilbert space during the variational search to explore
other symmetry sectors. Cure: ‘two-site’ update, which variational optimizes two A-

/
tensors at a time.

Represent MPS in mixed-canonical two-site basis:

. Aa') , g(cm

€)= (Bewdled 1< TN TET |

A0y ¥, l6
Aa) > @Cuﬂ - R
Then extremi imultan ly wrt A+ 6‘;
en extremize simultaneously w u) / Cl"'(')
d ) q
=B [GWg) - aduy | =0
éa&ﬂ) éACL) %7 )
- Aas ACM
1 . |6: ACL) /Z“LO
l ! |(;‘ - >\ hﬁ_ \F":'_____.
( T--—"' « :
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\ q (
Compact notation: qu (/AVA) ;)Q(A-b)awith composite index ¢} :(d‘()‘( E(ﬁ)

and

71

& T 1
= g
K, \l_\ a8 . T

( VI — ~

s

L(l 1) WC!) WQ,,O afnﬂ")

Use Lanczos to find lowest eigenvalue of variational equation, reshape updated (A&) ‘

w0 gt

O G A 1 < Vi

updated (A,,S) - — - KF'TT'- G’l&
pd 0 08 D}

Key point: g has dimensions 0110‘\, , hence explores a larger state space than

‘57""4 previously, in general also including different symmetry sectors!

A -(- e a
u s v A,d
~ oK
Truncate down to 0 and reshape; :\ —— ("IS = __Lr ﬁ
he 00 |
T F

b At sk

This concludes optimization of € . Now move one site to right and repeat. Sweep

ads
s oa'a fs

back and forth until convergence of full chain.
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