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Spring Term 2020

1 Stochastic signals in time and frequency domain

[Ambrozy Chap 3, all figures from here|

We have defined a stochastic process as a single parameter assembly of random variables
over a set of times. The RV, , could represent voltage or current and be regarded as

a discrete or continuous function of time.

In many cases, the function describing e.g. voltage is given by a formula with a precise time
dependence - a deterministic function. Often a few parameters - amplitude, frequency, etc -

fully specify the past and future of the signal over some time interval.

A stochastic signal does not allow knowledge of the next instantaneous value! Only probabil-
ities. In practice, some correlation might exist owing to small but finite time constants (e.g.
transit time of an electron across a gap). For very small time intervals, the instantaneous

values are not independent of each other. This property is known as autocorrelation.

First, we need to describe deterministic and stochastic signals in the time and frequency

domain.
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2 Deterministic and stochastic signals

Simplest deterministic signal - cosines and sines with integral multiples of frequency

Per|od|c

Domain Sine wcve Non sine wave

Time f
x(t) =X sinwgt x(t) =X, sinwgt+X, sin 2egt+...
generally: x(t)=x(t+T), T=2mw/wy

Transformation  Discrete Fourier Discrete Fourier
Flew) F(w)
Frequency
or complex wy W Wy 2wy3w, W . ] )
freauency | i yfumay) Flew) = X,Blua- o) Figure 1:  Schematic of various types of

+%y0l00-2an) 0 signals.

To get to frequency domain — discrete Fourier transform.

Almost periodic signal - superposition of sines and cosines

with various frequencies satisfying

Almost periodic
X
t
x(t)= X, sinw,t+ X, sinw,t:
Wy # Nwy # Mwj

Discrete Fourier

F{w)1 /

w, Wy 7]
Flw)= X,6lw-w,)+  Figure 2: Almost
sHblwmwlt beriodic signals.

Such a function repeats only after infinite time. They also have a discrete frequency domain
spectrum.
Transients - functions for which if . We use a Fourier transform

to get a continuous frequency spectrum. Although the Fourier transform might not converge,

we use it with caution anyway.
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Single
;
t
%z x=x(t)
Fourier integral

f Figure 3:
- Continuous signal

and its Fourier
transform.

F(w) continuous

Stochastic signals are similar to almost periodic signals, but the frequency spectrum of

stochastic signals is continuous.

Since we can’t predict the amplitude and phase of the signal at an arbitrary time instant,
we also don’t know the amplitude and phase of the Fourier transform. We need another

description.

Let’s figure it out. We can define a stochastic process by a function , just as for
a deterministic process. may have real or complex values (or vectors). If we get a

specific function during a trial, that is called a realization of the stochastic process.

On the other hand, say we fix time : may have different values during con-
secutive trials so that at fixed is also a random variable. This set of random

variables is called an ensemble.

We can characterize a stochastic signal by its distribution function (as in Module 1). We
can say two stochastic functions are equivalent if the ensemble density functions are equal.

Often in place of density functions we use their moments
So we have two ways to define a density function for a stochastic process:
a single realization as varies (first moment = average);

set of realizations at a fixed time instant (first moment = average);
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We can do the same for higher-order moments.

Ergodic process - the case in which the density functions (or moments) calculated these two

different ways are the same.
With this way to characterize stochastic processes, we can define
stationary and non-stationary stochastic signals.

Stationary Non-stationary

All moments independent of time.

Ergodic group: contains distributions having equal, same-order moments. Most often, dis-

tributions in electronic devices are stationary and ergodic.

Now let’s consider the physical meaning of the moments.
First-order - expected value
Central second-order - mean square value of fluctuation — variance.

Dimension of second-order moment = or — connected

the stochastic signal.

Real power is a physical quantity that can be converted to heat for any waveform (frequency
and phase information is lost). So the power spectrum - or power contained in various

frequency bands - is a physically meaningful and measurable quantity.
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Later we will see the link between the time-domain equations and power spectrum is via

Fourier transform and autocorrelation function. The ACF is:

This function is the expected value of for . It can also be regarded as the DC
component of the power in the signal. For , it also shows the correlation between

consecutive time instants.

Intuitively, we should have that the total power in the range must equal the power obtained
from the mean square value of time instants for . We will derive Parseval’s theorem that

states this fact soon.

2.1 Power spectrum

Consider a deterministic (periodic non-sinusoidal) waveform. We can always expand it in a

Fourier series:

Using the Euler relation, we get:

Introducing complex coefficients:
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So we get consisting of a constant and vectors rotating at
Take . Note that
For negative frequencies, note that switches sign, but does not. So for all

, we can use the universal coefficient:

rather than separate coefficients and . So the original signal can be expanded
as:

With this expansion, we can obtain the mean square value of . We multiply the
Fourier expansion of by its complex conjugate and average in time:

The period . For , the integral term gives zero.

So we get:

Also remember that and for the same are conjugates and hence have
equal magnitudes. Therefore, is even.

Here is an example plot of the Fourier coefficients and double-sided power spectrum versus

frequency:
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(a)

lel?

el

; m]’ .

w

Figure 3-2 Periodic nonsinusoidal signal. (a¢) Complex Fourier

flicient: functi f discret o f ies. (b) Double- . .
coefficients as a Iunci :?:e;)po‘:s::espeegzl:un:equencl S ul Flgure 4.
Note that the dimension of is or , and so the dimension of
is or . If the given voltage (or current) is dropped across (or flows through) a resistance

, we see we get units of power — we have a power spectrum:

Often we just refer to as the power spectrum.

So we get the theorem: the power of a periodic nonsinusoidal signal can be computed from

the Fourier coeflicients.

Regarding the negative frequencies: since is even and we have assumed no DC offset

( ), we have:

Notation: lower case = two sided power spectrum, upper case = one sided power spectrum

(only positive frequencies).
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Now consider a deterministic signal with a continuous Fourier spectrum. The discrete spec-

trum — continuous spectrum , using:

The function must satisfy certain requirements.
1. should be continuous and differentiable.

2. Integral of absolute value of should be finite:

Since (2) is quite restrictive, we can instead require that is defined on

So that the Fourier transform is:

Example: ramp function

ImF(w)

(b)

Figure 3-3 Nonperiodic signal truncated in time. Figure 5: Ramp function.

(a) Time function. (b) Fourier spectrum.
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Some other nice properties.

Since is real (e.g. it consists of voltage values from a scope), we can write:

Now rewrite with rather than . First term is the same, second term changes
sign. So

If we know , we can get by inverse Fourier transform:

Now let’s do something more interesting by computing the time integral of . This is

proportional to the energy in the signal:

We can switch the order of integrations:

And using the relation at top of page, we get Parseval’s theorem:

A subtlety: for signals that have a finite value outside of a time window (e.g. NOT the ramp
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function shown before), the power can as . We can instead compute the mean

square value = time average power:

Considering functions without the time window restriction (just requiring that goes

to a finite limiting value for ):

Taking to have units of current or voltage, average power is:

current voltage

From here we can define a power density:

Note: this definition is for a two-sided power spectrum:

Often another quantity is also referred to as the power density:

Units:

Since is an even function, we can introduce the one-sided power density:
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Finally, we often express the distribution functions in terms of rather than

Using , we get:

Here is an example of the Fourier spectrum of a signal and its power spectra:

sla)

Figure 6: Example Fourier

(b)

spectrum.
Note that is a complex function — contains real numbers for each . However,
has only one real number. cannot be determined from

What happens for stochastic processes? We can still define a mean square value and hence

obtain the average power.The following result still holds:

The problem that arises for stochastic signals is that may not exist. Consider a

stationary signal of infinite time duration. Condition (2) is not met since:

Interestingly, can still be defined. The stationarity of the stochastic process causes
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to be a finite, time-independent constant. That means that

is also finite and so the function is well-behaved in some sense. Note that Dirac deltas

could exist in without affecting this argument.

The upshot is that the power density can be defined for stochastic signals, but sequence of
steps used to obtain the power density of a signal of a deterministic signal may not work for
a stochastic signal.

Hence we must introduce another description - the autocorrelation function.

2.2 Correlation, autocorrelation

Up till now we have assumed independence of random variables. What if that is not true,

and how to measure it?

One way is via a correlation function. Say we have two RVs, . CF is:
Rewriting:
For , we have a familiar result:

We now define

[If have DC components, we can incorporate them easily.]
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Now consider the possibility of allowing time shifts between the two functions:

This is the cross-correlation function.

We can apply this definition for a single stochastic process to get

or the autocorrelation function. [We require ]

If there is no correlation between for any
then

If there is correlation, will tend to for

For stationary stochastic processes is independent of

choose the integration interval

The above equation is valid for stationary ergodic processes.

Properties:

. We are free to
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(b) /\
T = Figure 7: Signal and auto-
Figure 3-6 Asymmetrical stationary triangular wave. 3 3
(ga) Time fu{xctiont. ;b) /t\l:tocon)'el‘aliong func!i;‘n.e Correlatlon funCtlon
Proof of (1): For your HW.
Proof of (2):
Related result: yields the mean square value of a signal at . thus

provides additional information on the stochastic signal.

If a signal is not periodic, are independent as
Thus
If increases and an increase in is observed, a periodic component is

present in the signal.

The interval in which does not decrease permanently below a given
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fraction of is called the correlation interval.

The convergent property of has great implications for the Fourier transform.

Consider a signal limited to a time window as before. We have the ACF:

Take a Fourier transform of

Add a factor of 1 =

We can do either integration first. Switch the order:

Define so that

Note that depends only on . is now
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Now let’s remove the requirement of finite . Define

Recalling the earlier definition of power spectrum, we see that

Then, if we inverse Fourier transform, we find:

In other words, the ACF and power spectrum are related by a

Fourier transform. We have derived the Wiener-Khintchine theorem.

Common forms and notation:

Since is a real, even function,

Relation to autocorrelation function:
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At

as we have derived before.
Gaussian stochastic processes are those that have an ensemble density function following a
multi-dimensional Gaussian at any fixed time instant. A nice property is that these distri-

butions remain Gaussian even after a linear transformation.

More concretely: take two random variables, . The values are

and . Let , variance , and let them follow a two-
variable normal distribution . Then

7= MEO = M) = [ s (1)

ri(r) = MIE@EE+] = [ [ owraflonma)dodos 2

The process is Gaussian if:

1

—(z2—2pz1T2+22 o2 (1—p?
florm) = gog e e (3)
Le(r)
p = p(7) = : (4)

x

The common density function of instantaneous values always has a normal distribution, no

matter the value of ) depends on
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3 Typical autocorrelation functions and their power spec-

tra

3.1 Constant signal

Function:

Autocorrelation function:

This value is also the mean square value.

Power spectrum:

Reminder of Dirac delta properties:

3.2 Sinusoidal signal

Signal:

Autocorrelation function:

Since is independent of phase , this result is valid for as well.
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Power spectrum:

It consists of two weighted Dirac deltas symmetric about the origin.

Single-sided power spectrum:

As expected, all spectral power is in one spectral line for this sinusoid.

If we know the time function, getting spectral power is straightforward. For stochastic
signals, we generally can measure . We can then get but not the original time

signal since the phase information is lost.

Consider band-limited white noise with a single-sided power spectrum as:

Autocorrelation function:

Let’s consider two cases.

1. so that
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(a) |

Figure 8: Band-limited
Figure 3-7 Band-limited white noise. (@) Power spectrum. . .
(b) Auto‘ior}:elation fuLc{ionA Whlte noise and ACF
So, in the limit of low bandwidths and short correlation times, a stochastic signal can
be approximated by a sinusoidal signal of frequency . Now, previously
we found from the Rayleigh distribution that narrow-band noise can be thought of as

a carrier with amplitude and phase stochastically modulated.

The above analysis tells us that actually the carrier amplitude can be approximated

as constant (in this limit).

50 L i
-08 |

o NAT LT L) Figure 9: ACF of narrow-

Figure 3-8 Autocorrelation function of narrow-band white nose.” b an d Whlte nOiS e

(Courtesy of Verlag Technik, Berlin.)

General rule: smaller the bandwidth, the more deterministic the signal is <+ the slower

the random phase changes. We will use an approximation based on this later.

. Say . Then

As , goes to zero faster. In the limit, we have:
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Therefore, the autocorrelation time interval of ideal white noise with infinite bandwidth is

zero — no correlation between instantaneous values.

3.3 Shot noise

Let’s return to our early calculation of shot noise power spectrum.

Here is a sketch of the current fluctuation at time and

(a)

(6) ; Figure 10: Shot noise current versus
time.

In equations:

The autocorrelation function is:

Figure 11: = ACF of shot noise
7 current.

()

To compute this function, has to be shifted left or right and the product of instanta-
neous values has to be averaged for a long time.

Now, the value , are independent -> the autocorrelation interval
is confined to

The autocorrelation function of rectangular pulses has a triangle shape.

To get the average height, get by setting in ACF.

Average height is then
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So that

We already figured out that has a Poisson distribution. Therefore,

So we get:

We get the single-sided power spectrum in the usual way (remembering that is defined
within only ).

If , sinc -> 1, and

Transforming to frequency rather than angular frequency, we get our original result:

The mean square value of the fluctuation in a frequency band is

This calculation helps us see a limitation on . it cannot be too small because otherwise
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the assumption of independence of current in each time interval is not true.

In the shot noise derivation, we subdivided time into arbitrary intervals and found current

pulses due to this subdivision.

Some noise sources naturally have a pulse waveform (e.g. burst noise and processes related

to voltage breakdown). A time function of “random telegraph noise” is

u
4
+U [ o
t i -
t
-

L
|
|
|

Figure 3-10 Random telegraph signal.

Figure 12: Telegraph noise.

You will see how to obtain the spectral power of this signal in the HW.

4 Response of a linear network driven by a stochastic

signal

For small signals, we describe electronic devices as linear networks. In a transistor, several
different noise sources can simultaneously exist. In between them can exist resistive and
reactive network elements. The ACF and power spectrum that is measured is affected by

this network.
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The most general relation between the input and output of a linear network

with weight function is

By causality, physical networks have

So that the output does not diverge, we require

Now consider an ideal white noise source with independent instantaneous values for an
arbitrarily short time interval ( ). By the linear relation, the
output will contain the driving function value at a time instant, as well as earlier input
values owing to the ‘memory’ of . Therefore, the ACF of the driving and response

waveforms are not the same in general.

Let the input driving signal be stationary and ergodic with ACF

We want the ACF of the response

To get it, first compute

Recall the definition of ACF:

So we need to integrate in time. We can exchange the order of integrations:
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Let’s use Fourier transforms to simplify this expression. Recall that

So the Fourier transform of ACF is:

Multiply by , and exchange order of integrals again:

Since is real (it is the impulse response of the electrical network consisting of e.g.

voltage measurements from a scope), the first two terms are a conjugate pair:

So in the frequency domain, we get the output response simply by multiplication.

We often use this equation rather than the time-domain version. Relations:
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Example: ACF of the output signal of a single-pole low pass filter. Transfer function:

Input = , single-sided power spectrum:

Filter output:

ACF:

Schematic figures:

S
gr n

g ot

g w T
(5) (q)
Figure 3-11 White-noise characteristics. (@) Power spectrum, without band-limiting. Flgure 13 Output through a band-
(b) Power spectrum, with band-limiting. (c) Autocorrelation function, without band- ..
limiting. (d) Autocorrelation function, with band-limiting hmltlng network.

If the input signal has a normal distribution, output signal will also. In fact, a band-limited
network output will be closer to normal because output is a linear combination of
instantaneous values weighted by . So, the sum distribution should approach
the normal distribution due to central limit theorem.

In practice, we need the time constant of the network to be larger than the AC interval so

that the samples are independent.
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