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Lecture 14: Density matrix dynamics
Reading: Lamm and Lawrence PRL (2018).

1 Introduction
The problem of preparing a thermal state on a quantum processor has traditionally been considered
challenging and not tractable for near-term devices. QITE and QMETTS appear to have mitigated
the problem by not requiring the preparation of a thermal state, but rather evolving in imaginary
time and sampling in a Markov chain process to yield a thermal average of an observable. However,
combined real-time and imaginary time dynamics have not yet been implemented in conjunction
with the QMETTS algorithm, although there appears to be no barrier to doing so. In any case,
before these algorithms were first reported, other schemes have been described to compute dynamics
and thermal averages on quantum processors.

One of those recent schemes is Evolving density matrices on qubits algorithm by Lamm and
Lawrence. It is a hybrid quantum-classical algorithm to simulate the dynamics of a quantum many-
body system at a finite temperature. It works by first computing a classical approximation to the
thermal density matrix, which is necessarily sparse, and then time evolving each element of this
density matrix on a quantum processor. Observables can then be computed using this time-evolved
density matrix. The advantage of this scheme is that the computation of the thermal state is
performed on a classical computer, avoiding the challenging state preparation step. Then, evolving
the mixed thermal state reduces to evolving multiple pure states.

2 Density Matrix Quantum Monte Carlo (DMQMC)
To begin, we first need a sparse approximation of the density matrix at a given temperature. A
stochastic algorithm to do that is DMQMC in which a population of imaginary particles known as
psips explore configuration space via random walks in imaginary time, β = it. As β →∞, the psips
density approximates that of the ground state. For finite β, the psips density approximates that of
the density matrix at T ∼ β−1.

We begin by deriving the symmetric Bloch equation for the imaginary time evolution of the
density matrix ρ = exp(−βH). Using a resolution of the identity to express

rho(β) = exp(−βH/2)
∑
α

|α〉 〈α| exp(−βH/2) (2.1)

we get,

dρ

dβ
= −1

2
(Hρ+ ρH) (2.2)

with the initial condition ρ(β = 0) = I where I is the identity matrix corresponding to infinite
temperature. DMQMC stochastically implements a first-order Euler difference approximation to
this equation with ρ represented by psips. Each psips is associated with a matrix element |bp〉 〈ap|
and sign χp so that the approximate density matrix is ρ̃ =

∑
p χp |bp〉 〈ap|.

The algorithm starts by randomly placing psips along the diagonal of ρ with positive sign χp = 1.
The psips density is evolved in steps of ∆β for a total number of steps Nstep = β/∆β. At each step,
a psip can undergo one of four operations that are described in the paper and I won’t reproduce here.
The main point is that after evolution in β following these steps, we obtain a sparse approximation
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to ρ(β). As expected for a stochastic algorithm, the expectation values converge as P−1/2 where P
is the number of psips.

3 Dynamics on a quantum processor
Now that we have a classical approximation to the thermal density matrix, we want to perform
quantum simulation of dynamics. We can get observables at a given time as:

〈O(t)〉 =
Tr(Oe−iH1tρeiH1t)

Trρ
(3.1)

where H1 is the perturbing Hamiltonian that turns on at t = 0. To ensure the density matrix is
Hermitian in the presence of stochastic noise, we use the density matrix ρ = (ρ̃+ ρ̃†)/2 so that

〈O(t)〉 =
1

Trρ

∑
p

Tr

(
1

2
Oe−iH1t(χp |bp〉 〈ap|+ χ∗p |ap〉 〈bp|)eiH1t

)
(3.2)

where the sum is over psips forming the sparse approximation of the density matrix. Note that
from this equation, the dynamics of each psips can be obtained independently from all the others -
no mixed state required!

The only remaining task is to actually evaluate the individual terms. If we have a diagonal term
for which ap = bp, then computing 〈ap|O(t)|ap〉 is straightforward as a normal measurement. If the
psips is non-diagonal, e.g. |bp〉 〈ap|, it must be diagonalized. Taking χp to be real, then

|bp〉 〈ap|+ |ap〉 〈bp| = |up〉 〈up| − |vp〉 〈vp| (3.3)

|up〉 =
1√
2

(|ap〉+ |bp〉) (3.4)

|vp〉 =
1√
2

(|ap〉 − |bp〉) (3.5)

Therefore, we prepare the states |up〉 and |vp〉, measure the operator, and take the difference to
get the off-diagonal terms. Note that I think Eq. 5 in the Lamm paper is missing a factor of 1/2
and χp. The 1/2 factor is because in the arxiv version they defined the states |up〉 and |vp〉 without
a factor of

√
2 and I guess forgot to update equation 5 in the PRL version. The χp I think should

still be there but am not sure what happened to it.
How do we prepare the states |up〉 and |vp〉? I don’t really understand the method proposed

on p3 of the paper. Here is a scheme I came up with instead. Start with an ancilla qubit in a
superposition state. Apply anti-CNOT, controlled by the ancilla, to flip the qubit corresponding to
|ap〉. Similarly, apply CNOT to flip the qubit corresponding to |bp〉. Apply H to the ancilla. The
resulting state is:

|0〉 ⊗ (|ap〉+ |bp〉) + |1〉 ⊗ (|ap〉 − |bp〉)√
2

(3.6)

Now measure the ancilla. If we measure 0, the system is in state |up〉 and we proceed. If we
measure 1, the system is in state |vp〉 and we add its contribution to the expectation value with a
minus sign.

To summarize the steps to be performed:
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1. After obtaining the DMQMC density matrix, prepare the state |ap〉, |up〉, or |vp〉.

2. Time-evolve the density matrix element by Trotterization

3. Measure O and other observables

The nice feature of this algorithm is that one can perform quantum dynamics over the full
Hilbert space on the various components of the thermal density matrix. On the other hand, I
wonder how much time must be simulated before the dynamics is not tractable classically given the
sparse initial condition.
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